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CKLCIJLATIONOF TBE LATERAL-DYIWMIC S.T4BILITYOF A=RA~*

By A. Raikh

The object of this report is to present a
the lateral-dynamic stability of an airplane.

.

methcd of computing =‘:-

(%?aphsand formulas are given with the aid of which”all the -‘““L <“=.:
aercxlynamiccoefficients required for computing the lateral”dynamic
stability can be detemnined. A number of num&ical exam~les are
given for obtaining the stability derivatives and solving the .
characteristic-stabilityequation. Approximate formulas are derived
with the aid of which rapid prel~ computations may be made and
the stability coefficients corrected for certain modifications of
the airplane. A derivation of the lateral-dynamic-stabilityequa-
tions is included.

INTRODUCTICIN ,. .. _

b the present,stage of development of airplane design, con-
stantly increasing requirements are fmposed on the airplane as
regards stability and maneuverability. If the area of the vertioal
tail surface and the transverse dihedral of the wing are-unfavorably
chosen, the airplane will be subjected to large lateral motions at
the least gust of wind and the pilot will be under the constant ----
necessity of appl@ng the controls. Some airplane8 because of their
flying qualities are generally approved by pilots. Computations show
that such airplanes are syirally unstable only at sufficiently large
angles of attack but are spirally stable at small angles of attack.

A methcd of commutation of the lateral-dynamic stability is
presented herein. The computation is illustrated by examples of
the commutation of a ?orthrup 2E airplane, which has received the
highest commendation of pilots for its piloting characteristics with
regard to stability and maneuverability. -...

The difficulty of computing the dynamic stability lies in the “
.

fact that a large number of aerodynamic coefficients, the so-called

*“Raschet Bokovol Dinamicheskoi Ustoichivosti Samolets.” Trudy
Tsentralnogo Aero-Gidrodinamicheskogo kstituta, No. 453, 1939.

.
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rotary derivativee, are required far the computation. These deriva-
tives are not encountered In the usual aerodynamlo computation. ti
order to facilitate the compu~tion, a number of curves are given
with the aid of whioh these magnitudes are rapidly and EIfmplydeter-
mined. The numerical examples given for computing the coefficients
further simplify the problem.

A comparison of the aerodynamic coefficient obtained by compu-
tation from graphs and that determined from tests in the wind tunnel
is presented herein. b order to oheck the accuracy of the final
data, a comparison is given of the period of oscillation ed the
time taken for the damping of the lateral motion as obtained from
flight tests and by computation, respectively. The comparison shows
that the computation gives good results.

Notwithstanding the apparent complexity, the entire computation
on the lateral stability from the available aerodynamic coefficients
takes no longer than 1.5 to 2 hours. The author expresses his thanks
to A. I. Silman, a oandidate for a technical degree, for a number of
valuable suggestions utilized in this work.

.—

SYSTEM 01’KKES AND NOTATION

The system of axes is shown In figure 1. The origin of ths
coordinates is at the center of gravity of the a&plane.

1264

s
GI
N

—

“

The X-axis is In the pbine of symwtry of the airplane and dir-
ected parallel to the veloolty h steady flight. The Y-axis is per-
pendicular to the plane of s-try of the airplane and directed to
the right of the pilot. The Z-axie is in the plane of symmetry per-
pendicular to the X-axis and clirecteddownwards.

x, Y, z forces along corresponding axes; positive if
direotion agrees with direotion of axes

L, M, N mmnents’about corresponding axes: moment L is
positive if it causeO right wing to drop;
momant M is positive if it causes tail to
drop; moment N is positive if it causes
backward motion of right wing

u, v, w

p) % r

projection of linear velocity on oorrespondhg
axes; positive if direction of projections .>.
agrees wtth directions of.axes

. ==---...
-.””

projections of”&&ular velocities; have same posi- ?

tive directions as moments L, M, I?
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A, B, C
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angles tie by given
axes respectively;
tions as L, M, N

direction with X-, Y-, Z-
-.7----..-

hawe same positive direc-

mments of inertia a%out X-, Y-, Z-axes

the centrifugal momeritof inertia [Ed. note,
product of inertia with respect to X- and Y-
axis]

angle of attack, degrees -. .—

angle of attack oomputed ft’omline of zero lift,

degrees

sideslip angle, ~ . -arc sin v/T, radians [NACA
oomment: ~ as used In this report is of
opposite sign to 13 as used in Amerioan and
British report&~

angle of incltition of flight Tath to horizon-
tal (positive for lift), degrees

angle of dihedral of wing, angle between plane
of chords and plane at right angles to plane
of symmetry and passing through chord at tip,
degrees

angle of sweepbackj angle between focal line at
0.25 chord computed frm leadi~ edge and
plane perpendic- to axis of fuselage,

.

-,...

1

-—

degrees

angle between line
of airplane with
oal tail surface
and line of zero

area of wing

,.

Joining center of gravity
geometric center of verti-
(with pai?tof fuselage)
lift, degrees

. .
area of vertioal tail with part of,fuselage

(fig. 11) ..

area of lateral projection of fueel.age

span
.- ..

-.”
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co

‘ot

2t

q

P

%-b

chord at root of wing

chord at tip of wing, effect~ve tip chord ie
determined by prolonging lines of leading
and.trailing edgee

aspect ratio

taper of wing

d.istanoefrom nose of fuselage to center of
pa-vity of airplane

distance from rudder hinge to center of gravity

length of?fuselage

density of the air

coefficient of effectiveness
surface

coefficient of lateral foroe

.

gi
ml

..-—

of vertical tail

.

.

.
coefficient of

coefficient of

rolling moment .

yawing moment

Ifft force coefficient

nond-neio~l derivative of lateral force with
respect to sideslip angle (S in radians)

nondimensional derivative of rolling moment with
respect to sideslip angle

—

.

?
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nondimensional

5

derivative of yawing moment with
respect to sideslip angle

notiimensio=l derivative of rolling moment with ‘-
respeot to angular”velooit~ of roll

nondimensional derivative of yawing moment with
resyect to angular velooity of roll

nondimensional derivative of rolling moment with -
respect to angular velocity of yan

-.

nondimensional derivative of yawx moment with
respeot to angular velocity of yaw

coefficient of moment of iriertiaabout X-axis

coefficient of moment of inertia alout Z-axis

weight of airplane

mass of atrplane

relative density

unit of time

of airplana . ---

nondimensional time

coefficients of characteristic equation

.

.
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1. MWTION3 OF LATERAL-DYNAMICSTABILITY OF AIRPLANE
.

If the rectilinear steady flight of an airplane is considered,
the motion of airplane after a certain dldnxrbance is described by

I
1

a system of six equations with SIX variables:

U, W, q, and P, p, r

If.only -11 deviations of the airplane
linear flight are considered. it may be sh~n

from steady reoti-
(referenoe 1) that

the system of six differential equations breaks up into tw~ inde-
pendent systems of equations. In the first system of differential
equations the following variables enter: .

W projection of linear velocity on X-axis
.-..

w projection of linear velocity on Z-.axif3 ---

~ projection of angular velooity on Y-axif3

In the first system of equations, there enter only variables
charaoteri.zingthe motion of the airpbne in th~ plane of symmetry
(that is fn the plane XOZ). In the second group of equations there
enter

$

P

r

the variables: .

angle of sldeslip, determined by projection of velooity on
Y-axis (sideslipvelocity v) .

projection of angular

projection of angular

The variables p, p, and r
airplane.

velooity on X-axis. ‘
. . ..

velocft$ on Z-axis

characterize the Ia’{.eralmotion of the .-

BY assu@ng the nondependence of *he ’lateralmotion of the air-
plane on its longitudinal motion, the equations of the lateral dyna-
mic stability oan be derived.

For steady rectilinear fltght without sideslip

.

“
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. X= Y= Z= L= M&Ns O

P =q=r=o

W=T*O
“1

where T is the velocity of

After a certain lateral
will vary with time, whereas
sidered constant.

u= v J

7

(1)

the airplane.
.

disturbance, the magnitudes p, r, and v
the magnitudes ,q,w, and u may tiecon-

Because at the initial instant p . r = v = O,
of the magnitudes p, r, ati v are deno~ed by the

AP ‘P

Ar .r

Av =V

the disturbances
same symbols:

.
.“

Evidently, the lateral motion of the airplane will be characterized
by three equations: (a) the equation of the equilibrium of the for-

. ces along the Y-axis,(b) t@ equation of the equilibrium of the
moments of the forces about the X-axis, and (c) the equation of the
equilibria of the forces about the Z-axis. By the fundamental
equation of mechanics, *he product of the mass of the airplane by
the projection cf the absolute acceleration on the Y-axis is equal
to the projection of all external forces acting on the airplane on
the Y-axis.

In the general case, the projection of the absolute accelera-
tion cf’the Y-axis is equal to (reference)

—

.

and the equation
be of the form

of equilibrium of the forces along the Y-axis will
—

()
m~+rV .Y (2)
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For the case under consideration
.

u= Vandw=Oi

In
of

Y denotes the sum of the projections on the Y-axi~”
-g

equation (2),
all the exterml forces acting on the airplane so that E

where

(3)

Ya projection of aerodynamic force on Y-axis
I

~ projection of weight on Y-axis
i

In what follows, it i% assumed that the aerodynamic force aoting .

on the airplane during a disturbed motiofiand the small deviations
from the conditfon of steady rectilinear flight depend linearly Ori
the disturbances, and because at the initial instant no lateral force

.

acted on the airplane the aerodynamic force is given by
.

ay aym‘he‘mll -itties 3$ p atia r ‘e ‘eg~ected‘ ‘he’01-
lowing equation is obtained:

(4)

fi symmetrical flight there are no gravitational forces aoting on
the airplane along the Y-axis. If the airplane rolls, a component
appears on the Y-axis. When small oscillations occur, the force
acting along the Y-axis for a rolling angle # is equal to
(figs. 2 and 3)

G COS L9-@

.

.

.

lIn a rigorous derivation, the term ,pw drops out as a mag-
nitude of second order of smallness.
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where e is the
for the rotation

9

.’ . . -:., .--.-.:.. --

angle of inclination of the flight path. stlnilarly,
of the airplane about the Z-axis hy an angle ~

the component along the Y-!&is (fig. 4) is

G sin e~

Hence, for small deviations

But

Yw.Gcos@+Gsine*~=G cos6(@+tane~)

Gcose. 0V2 ~
C-L -?g-

Therefore,

For small

When this

osoi.1.lationsof

v =

the airplane,

-vsin13s -

it =Yke asaumed that

VB

(5) .

. *

relation is taken tnto account and actuations(3). (4).
and (5) are substituted in equation (2)

mv(-%+r)=%’+~$’’”+’~ ’”’)”- “-(6)

The equations of equilibrium of the moments about the X- and,Z-axes
are of the form (reference 3)

The moments of the aerodynamic foroes L
of the airplane after a disturbance wfll

-(7)

and N on the free motion2
deTend on the angular veloo- -

ities p and r and the angle of sidesllp B. For the small dis-
turbances p, r, and 13,.the aerodynamic moments tiy be represented
as follows by a ltnear dependence on y, r, and P.

..

2The free motion of the airplane after a disturbance with locked - -
controls.

.

-.—

.-

.

.,
—:7 . . .. .
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Equations (7) now become

MICA TM 1264
.

If equation (6) is differentiated together with equations (8), a
system of three linear homogeneous differential equations IS
obtah.ed because p = @/dt aml r ..d~/dt.

(8)

J
Nondimensional magnitudes are now introducedby the equations

V2
Y=c/&3*

-.

—

(lo) -

..- . ..- .

*% is here the lateral force coefficient which should not be

confused with the previously used notation for the lift coefficient. .
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.

M

3.- .

If all terms on the left
the nondimensional magnitudes,

in equation (9)
are introduced,

Sb

are
the

;— ,.. -

*.
%=@

?27

lmmsferred and
system becomes
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H the first equation of the system i6 divided by ~2v3s2/m,
2 DV2Sb, the follw~Wthe SeCOnd by 3A ~, and the third by ic ~

equations are obtained:

CL 2m
~~tar16xF.o ,

‘$ md~Z- iE m d$ ‘r-
‘~~+~vdt -$p. iA & dt—— —-q r=O

.

By sett@

‘=s

~=#i?
and by introducing a nondimensional

x=$

a

time by the equation_

.

___

(11)

(12)

.

...—-- ---
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Moreover, if the signs in the secoti and third equations are changed,
the following system of equations in ncmdimensional form is obtaine@:

8

The magnitudes

tests in the wind tunnel and are denoted as the sta-from the usual
tic derivatives. The magnitudes Zp> ‘r~ ~Y and nr

the moments of the aerodynamic forces in rotation and
son they are ‘mown as the rotary derivatives.

2. THEORETICAL DETEXMIM TION OF DERIVATIYIS

LATERAL DY?WWIC STAB~ITY

characterize

for this rea- ,

OF

.

As has been pointed ‘out,all aerodynamic coefficients are
referred to a system of axes: the X-axis is parallel to the veloc-
ity and passes th&ough the center of gravity of the airplane at the
initial instant; the Y-axis passes along the span of the wing to t— .”.:

the right of the yilot; ad the Z-axis is perpendicular to the first T

two and directed downward3. The positive &irection of the angles of
rotation and of the moments are assumed to be the following:

about the X-axis, motion from the Y-axis to the Z-axis ..

about the Y-axis, motion from the Z-axis to the X-axis
.._

about the Z-axis, motion from the X-axis to the Y-axis

“This system of axes Is.fixed in the airplane so that the .X-axis
coincides with the velocity of the airplane only at the initial

--

.-

3This system of axes is in accordance with the t&minology
-. -z

adopted by CAHI, May 1939,

. ___ —
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instant oftime. For a disturbed motion of the airplane, the X-axis
of’the fixed system of axes makes an angle p, which is,temed the 4
sideslip angle, with t~e flight velocity. z

N

The moments about the X- and Z-axis are denoted by L and N,
respectively, and the angular velocities about–the X- and Z-axis lfy
p and r, respectively.

ROTARYDERIK4TIVE 2P

In the following discussion, all the derivatives in the below-
stall range will be considered. h the case of rotation of the air-
plane about the X-axis (angular velocity p), an aerodynamic damping
iiomentarises
the equation

about the-sa& axis. This moment may be determined by

where

‘P
monmnt coefficient

J.l&-
2~=P nondimensional velooity of roll ..

Eere as usual (reference 1), a linear dependence of the aerodynamic
reaction on the disturbance is assumed. The rolling moment is pro-
portional to the fourth power of the linear dimension, @ therefore
the moment on the tail surface for an angular velocity p is neg-
ligibly small as compared with the moment acting on the wing.
Hence, in computhg 2P only the moment acting on the wing shall

be taken into consider~tion.

On rotation o~ the airplane about the longitudi~~ X~axis with
angular velocity p > 0 (the right wing drops); at a flight veloc- .
ity V, it is found that the angle of attack increases on the right
wing. At the distance y from the plane of symmetry

4

...

.

.

AaZtana=~
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Similarly, on the left side of the wing the angle of attack decreases.
A moment therefore appears opposing the rotation. Thus, for p> 0,
L < O; and the coefficient of the derivative of the rolling moment
with respect to tineangular velocity of roll is always (at below-
stall angles of attack) negative (fig. 5) 2P< O. Figure 6 gives

curves by which 2P for wings of various aspect.ratios and tapers —— _ _.

may be determined (references 4 ani 5).

Example: n

IWom figure 6:

It can be seen

.-

= 1.94, A = 6.34. ...—.

2P = -0.465. ‘

from the curves that 2P increases in absolute

value with an increasing aspect ratio of the wings and that 2P

decreases with increasing taper 2P.

The value of 2P is computed on the basis of the general theory

of the wing with account taken of the change in the distribution of
the circulation along the span due to rotation without considering
the change in velocity along the span. At below-stalling angles, t
the derivative

2P theoretically does not depend on the initial

twist of the wing nor on the angle of attack of the entire whg.
The magnitude 2P varies little for different wingk, as-tiy be seen

in figure 6. The mean value is 1P = -0.45. The sign of 2T maY

cknge only In the above-stalling range in the region of autorotation
of the wing.

ROTARYDERIVATITE ~

Znthe rotation of the airplane about the X-exis, the angle of
attack varies along the wing span and as a result the lift force
and the induced drag will not be the same at symmetrical elements.
Hence, when the airplane rotates about the X-axis> the airplan~ will
be acted on by a moment of the aerodynamic forces both about the
X-axis (2P) and about the Z-axis (np). As before, consider that

the moment about the Z-axis arising for angular velocity p is pro-
portional to the angular velocity of rotation,”so-that -.

.—_

where q is the dynamic pressure.
--——
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—
moment of yaw due to the angular velocity depends little on
surface so that in the computations for the dynamic stabil-
the moment due to the wing is taken into account.

positive rotation in roll p ~ O (right side of wing drops),
the results show that on elements of the right and left wing the lit%
force vector L and the vector of itiuced drag D are rotated and
charged (fig. 7). The airplane will therefore be acted on by a
moment about the Z-axis (moment of yaw), which for negative angles
may be positive and with increase in the angle of attaok of the wing
varies linearly so that at mode%ate anaes of’attack np iO always
negative (~< o (fig. 7)). Curves of the values ~~ (refer-

enoe 4) for untwisted wfngs4 of various tapers and aspeot ratios are
shown in figure 8. The curves give the values of ~~ where ~

is the angle of attack in degrees and is computed from the line of
zero lift. Hence, in order to actually compute the value of ~, it

is necessary to multiply the value obtained from the curves for the
given wing (given aspect ratio and taper) by the angle of attack (in
degrees) computed from the line of zero lift. .

For example,.q = 1.94, 1 = 6.34, ~ = @ (~ is computed from

the angle of zero lift). Fi?omfigure 8, ~~ = -0.00395 and, there-

fore, (r@a=9°= -0.00395X9 = -0.0356.

ROTARY DIXtIVAT~ Ir

For posttive angular velooity r, the left wing moves forward,
that is, the left wing has a greater velocity than the right wing.
Therefore, the lift force on an element of the left wing will be
greater than the lift fome on the symetr~cal element of the right
wing and as a result”the airplane will be acted on by an aerodym.mio
moment tending to lift the left wing, that 1s, a positive moment
about the X-axis. With increase in the angular velocity r, the
moment L increases in mgnitude and the derivative of this moment
with respec-tto the angular veloclty T = rb/2V will be positive
(at positive C&)5.

4The value of PD llttle affects the characteristic of the
dynamic stability and-therefore a
wing need not be introduced.

5Here, as previously, linear
angular velocity is assumed as is
angular velocities are considered

correction for the twist

dependence of the mom&t
permissible because only
and the terms containing

of the

-, _

4

_ -. -.:
.-.

on the
-.

small ““
the

squares of these velocities may be neglected.

b
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. L = ~ 2r@b

Ir> o

$
.-.—

E The coefficient Ir is determined for the wing and is propor-

tional to the angle of attack ~. Evidently, both the wtng taper
and the aspect ratio will affect the value of lr. Curves of the

mriatlon of

aspect ratios
seen that 2r

with increase

2r/~ for untwisted wings of various tayers and
-d>..-—

are given in figure 10. 15romthe curves it may be
decreases with increase In the tayer and increases

in the aspect ratio.

It is also apparent in figure 10that 2r/~

of airplane ohanges little with wings of d%fferent
ratios. The mean value is ar/~ = 0.017

0.018

for various types

tapers and as~ect .-.

,.. -—.

In order to obtain the value of Ir at a given angle of attack, .

the value 2r/~ obtained from the curves must be multiplied by the

. angle of attack (in degrees) for which the computation is coniuoted
(the angle of attack is measured from the line of zero lift).

-.

...._

For example, q . 1.94, A = 6.34, ~ = 9°. Fhmfigure 10

~r/% = 0.0185j 2r = 0.0185x9 = 0.1665. The vertical tail surface —
will also affect the derivative Zr of the airplane. “The part of

lr due to the

where

at = (~@)t

Kt

tail may be obtained frcm the equation

4)zt 2 s~f
q =atK ~ ~sin 2(x- ~), (14)

(fig. 11).

empirical interference coefficient at tail, mean
value = 0.8 --

distance &om center of gravity of airplane to
rudder hinge
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.

area of vertical tail surfaoe with part of fuselage
.

wing span .
e

wing”area
s.

“m

angle between line of zero lift and line connecting
center of gravity of airplane with geometric oen-
ter of vertical tail surface (including
fuselage) (for a low wing airplane x >

% angle of attack

Example: ~ = 2.05 ~ =

x = 12°

To find 2rt ‘for ~ = 9°, from

(from llne of zero lift),

part of
o)

degrees

It %f
0.8 ~ = 0.389 — = 0.093s

_...
equation 147

2r~ = 2.05X0.8(0.389)ZX 0.093xO.1O5 =

CORRECTION ON DERIVATIVE 2r FOR TWIST

-. .

0.00242

OF WING .

In order to Introduce a correction for twist, it is necessary
to use figure 12. Only the actioal.determination of the correc-

.

Ttion will be considered here . The correction for twist for wings
of various aspect ratios and the taper q = 3 can be found by use
of figure 120 .- —---- -

For a taper different from 3, the correction would be somewhat
different but the error will be very small and it may therefore tie
assumed that the correction for twist does not depend on the wing
taper. Assume, for example, the correction for the wing is found
to be 1= 6.34, the twist of the wing starts at the distance
0.226 b/2 from the root, increases linearly, and at the tip attahs
the value 1.5°.

At the distanae y = 0.226 b/2 from the root, the twist is
equal to zero (fig. 13(b)). In figure 13(a) at y = 0.226 b/2,
Al = 0.001. Subtracting this value from .D (fig. 13(a)), 0.0168 is

.

6This method and the curves are taken from reference 5, where
a more detailed description of the curves is found.
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.

.

obtained. This number is plotted in figure 13(c) and corresponds to
an angle of twist equal to zero; therefore, on the curve of f@-
ure 13(c) the point (0, 0.0168) is plotted. It canbe seen that at
the distance 0.4 b/2 the angle of twist is 0.3° (fig. 13(’b))and
from figure 13(a) A2 = 0.003; 2r/u=D - A2 =0.0158. In fig-

uxe 13(c) 0.3° is plotted as the abscissa and -0.0158 as the ordi-
nate, and so forth. A certain area is then obtained on the plani-
metering for which the correction in lr is obtained.

For the given case, Zr twist = 0.0144.

This correction does not depend on the angle of attack of the” -
wing?.

For the total value of tr

lr()‘r=~% + 2* + ‘r twist

. .

-—-. . .

..

(15)
-..

Example: find 2r: A=6.34, 7 = 1.94, ~ = 9°, at = 2.05,

Kt = 0.8, l~b = 0.389, Stf/S = 0.093, X = 12°

The twist ‘startsat 0.226 of the half span, increases linearly, and
at the tip reaches the value 1.5°

the
la)?
the

ROTARYDEEIVATIVE

-—
+ 0.00242 + 0.0144 = 0.1833 - ““-

%

During an angular-velocity of rotation about the Z-axis (angu-
velocftg of yaw r) a yawing moment arises, which depends on
vertical tail surface, tilefuselage, and the wing. At an angu- -
velocity r, on account of the difference in the velocities at
s.mmnetricalelements of the witi. different drags are obtained #

as a ~esult of which there arises a–-nt about th~ Z-axis (moment
..-

of yaw N). Evidently, the moment N due to the wing will be neg-
——. .

atlve for positive values of r (fig. 14). Similarly, for the “’
angular velocity r > 0 a negative yawing moment is -foundto arise
because of the fuselage and the tail.

7T~evalUe of Zr twist is positive for the case where the”.
angle of attack at the tip of the wing is greater than the angle of
attack at the root section.

..-.,.--. .
,- .—
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..-

The yawing moment will.increase in absolute value with increase
in r; henoe,

.

*

N . ~ n.@b
●

+< o (f@. 14).

The effect of the tail and the whg on the derivative nr will now

be considered.
.

Effect of Vertical Tail Surface on ~

In the oscillation of the airplane about the Z-axis, that is, at
an angular velocity r, the tail surface is found to be acted upon by
the force ,.-..——

()dcL rtt @tfv2t ~o~(x- ua)
F=— ——

datV 2

where x Is’the angle between the line of’zero lift arxlthe line
comecting the center of gravity with the geometric center of the
vertical tail surface with part of the fuselage. For a low-wing
atiplane, the angle x ~ O. In the expression for the force durhg
oscillations about the Z-axis there enters Cos (x%) because the

system of axes is fixed. M the derivative of the moment of this
force is taken about the center of gravity with respect to the non-
dimensional angular velocity 7 = rb/2V,

Finally, the

“()
—.—

dCL 22t P%fv2t co~~(x- ~, ““
Ilrt= -2 ——

~t b 2
-.

notiimensional derivative ~ is obtained by dividing

this expressionly @3V2b/2

In this equation no account is taken of the effect of the.fuselage
on the flow at the vertical tail surface. The indetermlnancy of
the maghitude of the Interference at the vertical tail.surface mkes
the theoretical computation of the moments due to the vertical tail

.

.

.
.

—
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surface inaccurate.. .Anempirical coefficient ~ characterizing .-

the velocity interference at the tail surface is therefore intro-
duced. Moreover, setting

c1 ,...
$

()

Cic~

z-t = ak ...

gives

By permitting’a small error, it may be assumed that COP2(X - ~)~1

and then

()z% 2 Stf
%= -2Ktat ~ ~

—

(16)
-.

..

where

It distance from.

b wing span

center of gravity of airplane to rudder hinge

.-

. . .
.

Stf area of vertical tail surface with part of fuselage
--— .—

s area of wing

For the coefficient ~, the value 0.8 may be taken.
-.

The value of at depends on the aspect ratio of the vertical
tail surface.

.- .

Figure 11.shows the dependence of at on the experimentally

bbtained aspect ratio At (reference 6). The mean value of the -.

coefficient at for afrplanes of the usual type is
.-

at = 2.2

In order to compute the aspect:ratio of the vertical tail surface

It$ the span of the tail bt must be taken as shown in figyre 11.

In the tatl surface area %f there is included the end of the
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fuselage (hatmhed area in fig. 11). The effect of the fuselage is .
not taken into account in equation (16). ~ the same manner as for
determining the damping of longitudinal oscillations, the coeffi- 2
cient 1.25 in equation (16) is introduced to take account of the -g
fuselage. Then

Example:

()2~ 2 Stf

‘rtf .2.5K+at ~ ~

Kt = 0.8 at = 2.05

L@ = 0.389 s*f/s = 0.093

By formula (16a),

‘rtf = 2.5X0.8X2.05X(0.389)2X 0.093 = -0.0577

(16a)

Effect of Wing on Derivat~ve ~

For positive angular velocity about the Z-axis (r > O), the
velocity on the left wing lnoreases and on the right decreases.
Hence, the drag on the left wing will be greater than on the right
wing and there appears a moment about the Z-axis acting against
the rotation (fig. 14).

The damping moment of ~ mom

and profile drags.

Curves for the determination of’

induced drag are given In figure 15.

wing is due to the induced

of the wing due to the

order to detemfie ~

from figure 15, it ie necessary to multiply the value of ~/~2

by %2 where- % is the angle d attack of the wing computed

from the line of zero lift in degrees. The part ~ of-the wing,

which is obtained as the result of the profile drag,’is small and
need not be taken Into account8.

%he curves for computing this part of the derivative nr are . ~

given in referetie.5. ‘
-.
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Exam21e. Find 4 of
4

~ figure 15, ~/~2 .
0
3b The total value of the

obtained from the formula

+

Example: Find ~ of

The characteristics of

The characteristics of

L@ = 0.389, At = 1.14.

●

the wing: ~ = 1.94, A = 6.34, ~ = 9*.

-0.000147, ~“= -0.000147X92 = -0.0119.

derivative q for the airplane may be

‘%f+%w

the airplane ~ = 90..

the wing axe: q . 1.94 ati A = 6.34.

It must
fuselage has

. value of ~

third of the

(16b)

the tail surfaoe are s~fjs

~ = qtf +% = -0.0577 - 0.0119 = -0.0696

= 0.093,

be barne in mind that at thes the interference of the
a strong effect on q. For example, for one model a

of the tail ani the fuselage was obtained equal to a

derivative ~ for the tail only, Hence, a sufficiently

reliable detemlnation of ~ can be obtained only by experiment.

The theoretical equations for detenninhg ~ may in individual cases

give considerable error a~ should be considered only as rough
approximations9.

Equations have been derived herein for the computation of the
rotary derivatives, that is, the coefficients of the moments obtained-
during rotational motion of the airplane (yaw or roll). The deter-
mination of the coeffic~ents of the forces and the moment of the
aerodynamic forces in sideslip follows. These coefficients are called
static derivatives.

23
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—

%arly in 1940 at CAHI, work will be completed on the determina-
. tion of the derivative ~ for 10 to 15 models. From this ,investi-

gation, the value of the derivative nr can be obtained for”similar

. airplanes.

—
—
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DETERMINATION OF STATIC DERIVATIVE 2P .

For 8 positive SideSlip &@O P the left wing moves forward,
the flow under the left wing tending to lift it, that is, for
p> O the rolling mament L is po~itive and

L =Lp@ = 8@qSb> O .-
—

-.2P> O (f@. 16)

Experiment shows the static derivative 1P may be found by

the formula

where

~ angle of’dihedral ofwhg

X sweepback angle of the wing

(17)

The csharactertstiosof the individual terms in the equation
will now be disonssed. The magnitude (2~)V=o gtves 2P for the

X=o
wing in the absence of sweepback and dihedral. The derivative

(28)*=0 arises from the change in distribution of the circulation

~ .0
over the wing span as the result 0$’the sldeslip. Test curves show
that this derivative inoreases with increasing angle of attack.

This magnitude oannot he computed on account of the absence
of test data. The plan form of the wing considerably affects ‘the
value of this ooeffioient. A rectangular wing without rounded tips
gives a value much greater than a wing with rounded tips(reference 7).

Theeffeot of the dihedral of the wi~ is-taken care of by the

term *$. The angle of wing dihedral ~ is measured between the

plane of the chords ati the plane perpendimlar to the p@e of
symmetry of the airplane ani passing through the roo% oh~rd (fig..17).

.

. .

.

.

.
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Experiment shows that 1P is proportional to the dihedral v+
with a coefficient of y~oportionality ~2@J, which may be deter-

..

mined from figure 18, which gives the values of the derivate 1$

for a wing without a straight midwing section.
.-

~ple: Find ZB of the wing: q = 1.94, A= 6.34) *= 4c25°0

** Accordi~ to figure 18, al$ja~=0.0133.
E

alp

2P =* ~ =4.25X0.0133 = 0.0565

For a wing with a midwing section it is necessary
the value obtained from f’igure18 the amount

to subtract from

(18)

where 3w/b is the ratio of the span of the midwing section to the

span of the wing. The angle -# in this case

d shown tn figure 17(b).
is to be measured as

bin/b = 0.226Example: ~ = ~*94~ x= 6*34, $= 4*25°,

[/2B = 4.25 0 0133 - 0.02(0.226)2] = 0.0523.

Tests show that the tip of the wing greatly affeots the value
.. ..

of the derivative 2$. The wing tip in vertical projection may be

such as shown in figure 19.
, -- -.

I&an syecially conducted tests (reforenoe 7), It was found
that if the ving tip is of the shape shown in figure 19(c), the” I --;-.--.;..
effective dihedral is increased by 1 to 1.5°.

Effect of Sweepbaok .

The angle of sweepback is measured between the lines passing
through the fooal line at 0:25 chord from the leading edge of the
wing and the plane perpendicular to the axis of the fuselage.

.
The

. sweepback angle x will be considered positive for the direction
.-
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shown in figure 20. For a positive sweepback at a positive si.deslip
angle, the flow about the left wing is Improved and the lift force “+

on the “leftwing is increased. As a result. an increase in the roll_ – E
ing moment is o~~ained for positive sweepba~k

X>0,2P=-0

The effect of sweepback fs taken into account
ah

—. .-
—

in equation (17) ~
—. .

the term X&. At the present time sufficient data, by use of

which the effect of the sweepback for different wings oould be
detez?nined,are unavailable. F. Weick (reference 8) recommends
for rectilinear wings of aspect ratio 6 the equation

31

9 x
= 0.0045 CL

where X ie the sweepback angle In degrees.

Example. X . 2.5°, CL = 0.73(m= ~)

(19)

From equation (19)

2P =x

Effect of

The previously

Tests show, however,

1. .

a2

9
2.5(0.0045X0.73) = 0.C?0822

x= .

Position of Wing Relative to Fuselage

descriked relations give 2p for isolated wings. ‘

a very great effect of the position of the wing
with respect to the-fuselage on the derivative 2$. It Waa found,

for example, that a center wing gives a value for Zp approximately

agreeing with the value for the isolated wing. A high wing increases
the effective dihedral by 10 to 1.5° and a low wing decreases the
effective dihedral by 2° to 5°. Thitichange In the effective dihed-
ral occurs, however, at small and medium angles of attack. At large
angles of attack different results may be obtained, which at the
present time, due to the absence of sufficient test da-, cannot be _.
even approximately predicted.

.

On account of the resistance cf the flow, all projections at
the lower surface of the wing increase 2p and conversely all pro- .

Jections on the upper surface decrease 1~. In a fixed syetem of

.
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axes, the X-exis passes below t,hecenter of pressure of the vertioal.
tail surface; therefore, the vertical tail surface will also give ‘a

.

rolling moment in sideslip. If the angle between the line connecting
the center o??gravity with.the center of pressure of the vertical
tail surface and the velocity is denoted by ~ -x ..,._

% %f
I$t =Ktat~~s~(x-%) (20) -

Example. ~=0.8, l~b =0.389, Stf/S =(?.083, at =2.05, X=--HO,

%=9°
By equation 20

.

2Pt = 0.8X0.389X0.093X2.05X0.0523‘=0.00597

It follows from the foregoing discussion that the derivative

%
may be determined with sufficient accuracy only by exp@ment.

These equations for determining the effect of the dihedral and
sweepback of the wing may be used for estimating the changes in the
airplane parameters after tumnel tests. For example, if from com-

. putation of the test data it is found that it is necess!iryto
increase 2~ by 0.026 and the parameters of the wing are q . 3,

A = 7 (without mid wing) the required increase in the dihedral
A* is obtained from the relation &#x O.0133 . 0.C!26 (the value
0.0133 is obtained frcm fig. 18) whence A* = 2°. H in another
case it is necessary (for example, from considerations of longi-
tudinal stability) to decrease the eweepback by X = 5°, tke
change in 28 aan be found. (The computation is conducted for

the initial &ate of flight of the given airplane). Let CL = 0.6

..

.—

—

a2
9~ s 0.0045CL = 0.0045X0.6 = 0.0027

Alp = 0.0027X5 = 0.0135

Hence, decreasing the dihedral by 5°, 26 decreases by AIB = 0.0135.

In order to compensate for the decrease”in 28 the dihedral of the
r

wing must be increased
-

.’

A~XO.0133 = 0.0135 .&

●
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that iS, the

A~ = 1°
—

dihedral must be inoreased by 1°.

DETERMINATION OF STATIC DERIVATIVE

*
_g—

.

.

%$

The static derivative nB . ?X~~~ characterizes the change
in the moment of yaw with chakge tn the sideslip angle and depends
mainly on the area and the shape of the vertical tail surface and
the fuselage. The center of pressure of the fuselage for the usual
arrangement is located ahead of the center of gravity and for this
reason the yawing momsnt due to the fuselage for p > 0 is posi-
tive, that is, the fuselage is unstable. As may he seen from fig-
ure 21, ~ < 0.

The magnitude of the coefficient n~ is determined analyti-
cally by the equation --

.

Sf.2f It %f
9

——.npf+n@t. K S b-~tat~~ (21)

—

. *

where
—.

‘f lateral area of fuselage

Zf length of fuselage
. .

The coefficient K@ may be found from figure 22 (taken from

reference 9)

----- -

.-..—

where

Zf length of fuselage (positive)

2fl distance of oenter of gravity from nose of airplane (positive)

h maximum height of fuselage (positive)

The coefficient Kp(Kp > 0)” maybe determined if the ratioB

2f/h and 2ti/2f are known.

—.

. ...—

.

..—-
..-

..
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Example: 1*/h = 6.c, 2ti/2f = 0.244
. . ...

From figure 22 it can be seen that KP = 0.106. ....

If sf~s =0.35 a& 2f/b = 0.595 then

~f = 0.106 X 0.35 X 0.595 = 0.C221. Equation (26) is suit-”
-.

able for airplanes with unstable fuselages. Sometimes the fuse- —.
Iage is stable (as is rarely the case) and tkis equation
then be applied. The value of, at may be obtained frcm

The mean value for Kt is 0.8.

Examyle: Zt/b = 0.389, Sif/S =0.Q93, ~ = 1.14.

l?romfigure 11, at = 2.05

‘n$t = - 0.8X0.389X0.093X2.05 = - 0.0593

%= npf + n~t = 0.0221 - 0.C593 = - 0.0372

cannot .
figure 11.

,—

. .-

. .

.
.,--

—<

—.

Let the area of the tail surface be”increased such that
AStf/S = 0.04. Then for the incrqase in the coefficient

% ‘-:’” ‘“”
...-*..-.-=:

A~=- 0.8X0.389X0.04X2.05 = - 0.0268 .<..

Thus, when it is required to increase the vertical tail area, the
span must ke increased but not the chord. If tie vertical tail
stcrfaceis increased by inc~easing the Choti, At decreases and

therefore at also decreases; as a result for such an increase in-” ——- —

Stf the weathercock stability (~) is found to undergo o~ .-:—

slight increases or does not change at all.
.- .:-

The equations for detezmriningthe value of ~ must be consi-

dered to be only approximate. For a more accurate determination of

np) recourse must te made to expertient. As in the case of deter-
,-

minhg the derivative 2P, these approximate equations may be used -
.-

for computing the derivative ~ after the tail area is increased

or decreased.
-–.“..
-.
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Effect of Propeller
..

In the present investigation, the effect of the propeller slip-
stream on the-dynamic-stabilityderivatives is not considered. The
derivatives rIP and ~ evidently will he greatly affected bY the.

propeller slipstream. Up to the yresent time, “however~~uf?flciently
accurate test data, by which a correction for the effect of the pro-
peller on the tail surface may be introduced, are unavailable.

D3’lYERMINATIONOFSTATIC DERIVATIVE y~

The static derivative y~ (fig. 23) ls always positive

(YP > 0). The derivative Yp characterizes tiheincrease in the

lateral force (Y) acting on the airplane during an increase in
the sideslip angle (p). Evidently, the value of Y@ $epends

essentially on the size and shape of the fuselage and of’tke ver-
tical tail surface. Diehl (reference 10) recommends the following
empirical equation for computing the derivative Y6:

blf
J@ !=o.12— s

..._.-.

Q (22) “’
. .

Example: b = 14.s3, 2f = 9.fi7, .s $ 33.4

Yp = 0.12 : . 0.12 14%53X9.67

-“

.= 0.453 ---
3!3.4 : —

Fcr airplanes with usual fuselages, the mean value of ye is 0.4;

therefore, the derivative YP has little effect cn the character-

istics of dynamic “stability.

3. EXPERIMENTAL DETERMINATIONOFDYNAMIC-STABILITY

DERIVATIVES

The dynamic-stability derivatives are divided into two grcuIs;
namely, the derivatives of the moments and forces with respect tc
the angular velocity, which are called the rotary derivatlyes, and
the derivatives of the moments and forces-with respect to the side-
slip angle, which are ths static derivatives.

-.

.

.



.

NACA TM 1264

The rotary derivatives may he determined in a wind tunnel on
special apparatus. The procedure of these tests is, however, rather
complicated and they will not be considered herefn (reference n).

The static derivatives np, Zp, am Yp may be readily

cbtained from the results of the usual tests in the wind tunnel.
For this purpose it is necessary to have the coefficients cf
yaw and roll and the lateral force (Cn, CZ, and Cy) for vari-

ous angles f3
ftgures 24 co

with sideslip

If these

at the given angle of attack. Culweg are given in
25 for the change in the coefficients Cn, Cz, and CY
angle.

.

coefficients are given in the fixed system of axes
assumed at CAHI (fig. 1), then In determining the derivative np,
the tangent to the curve Cn = f(p) for p = O met be drawn

and the slope of the angle of inclination measured (taking account
of the scale). Special attention must he paid to the detemi~tion
of the slope of *he curve Cn = f($). The slope of this curve

characterizes the weathercock stability. For stable airpla?es, tine
curve is like that shown in figure 24, that is, the coefficient Cn

decreases with increase in the sideslip angle p.- For neutral or
@terally unstable airplanes, the curves differ to a marked degree
from those in figure 24 near ~ = O only, in tinerange from P =“-3°
top= +3°, where for neutral airplanes these ctuwes run parallel
to the axis of abscissas and for unstable airpIanes the slope of the
curve ckanges sign, that 3s, the coefficient Cn In this range

increases with increase in ~. For a sideslip angle less than
B = -3° or greater than B . +3°, the curves in all cases are as
shown in figures 24, that is, the coefficient Cn decreases with .

increase @ the sideslip angle 13. Hence, in determining the
weathercock stability, the points lying within the range p = A3Q
must be considered. Durhg the tests, points must be taken every
lC angle near p = O but beyond lpi = 3° points may be taken
every 2° to 3°. The computations required for cbtaining the deriv-
ative are presented in figures 24 to 26. The coefficient 57.3 is
~ntroduced into tinecomputation for converting degrees into radians
in measuring the angle p. For a sufficiently accurate determina-
tion cf the derivatives ~, 2P, and Yp, it is necessary to cOm-

pute them for 4° or 5° angles of attack. (See apperxiix1.)

31
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Determination of Moments of fiertia of Airplane

In order to compute the lateral dynamic stability of the air-
plane, the coefficients of the moments of inertia, which can be
cbtained from the following formulas, must be known:

4A 4C
lA=~ and” iC.~

mb

._
-..-

-. —
,.

where

A polar mament of inertia with respect to X-axis,.

c Tolar moment of inertia with respect to %axis

b Ming span

m mass of airplane
..

Because for various conditions of flight-of the ai~lane (dif-
ferent angles of attack a) the ~es X and Z rotatewith respect
to the airplane,’itis evident that themoments of inertia will vary
likewise. If the moments of inertia of the ai.rp~ne akout the prin-
cipal axes (Af and C’) are known, the moments gf inertia about the
X- and Z-$.xesmay be computed.by”the following equatio~:

A=A1 cos~V+C’ sin2Q, C=C’ cos2~+A’ sin2(f,E

Computations show t-hatup to angles of attack a =

. 4+ sin ~q

(23)

150 to 200 it
may be asmmed wfth n sufficient degree of accuracy that A = A1
andC= C!, t~t 1~, the mo~nt~”of i~rt~ about the X. and

Z.axes are equal to the “correspondingmoments of .tnefile.aboutthe
principal axes. As will he shown, the centrfiugal moment of inertia
has little effect on the sta%ility characteristicsand therefore E
need not be camFuted.

At the present time””fiosuffic”iently-”acc~atestatistical for-
mulas exist by which the moments of inertia of.an afrplane may be
quickly determined and it is therefore necessary to resort.to
analytical computation in each case. Formulas and the computing
procedure of the moments of inertia are given in reference 12.

.
. .‘!

.... ..

.

-.
#

.
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The values of iA and ~ change within the ranges

C.049 ~ i~< 0.089 and 0.09< ~C 0.154.

Dete?xninationof “Airplane Density” p

The “airplane density” p is determined ky formula (11)

where

G/S

7

b

The
the
per

bad/sq meter,

unit weight of

span, meters

(kg/m2)

ati

.-

.—

commutation of the dyna?micstability is usually conducted for
altitude H =“30CC meters-and there.fcre y = 0.908 kilograms
cubia meter. For the altitude “E = 3000 meters for standard

atmosphere

G
E

w= 2.20~

Example:

G- = 78 kilograms per square
s

l)= 14.53 meters

w’2.+& ..

v is a ncndtiensional magnitude.

= 11..5

33
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(24)
.. ..... .----

meter
,.

.

.,, . .

.-. _
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Determinantion

The magnitude 7 is determined

T
‘%

..—

NACA TM 1254 .

of T

by equation (11)

.——

In determining u for H = 3000 meters ,

G
5T= l.l—
T

(25)

where G/S is in kilograms per square metar, V is in-metersper ..

second, and T is in seconds.
,“-.

Example: G/S . 78 kilo~ams per square”rneterand
-.

V . 47.4 meter~
per second

G

-r 5
=1.17= 1.1

4. SOLUTION OF SYSTEM

A solution of the syetem
in the form

of

79— = 1.79 sec.47.4 —.

.

CF EQU4TIONS OF MCTION

equation” will n~ te sought
.

.-
By substituting in equations (13) and divldfng by eAt, the followhg
equations are obtained:

#

.
------

.-
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.

i- . . -:.:- .

-.

The system of linear homogeneous equations has a solution if the
.-

determinant of the system is equal to zero. :;_
... , .-

In expanding the determinant, an.equation of the fourth degree
in A is obtained, which is called the characteristic equation. _

A4A4+A3A3+A2A2 +AIA+Ao = O “ (26)

where

A2 =%sMLilk+4-

.

—.-.

.—. . .

.- .

.,..
-.

— . .
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JLmlys.isof the coefficients shows t!latUP to angles of attack from
15° to 20° the rwignltude

‘E has little effect on tineroots of’the

characteristic equation and without large error i~ = o*

If in addition, this analysis is restricted to the considera-
tion of level f’light,that is, tan G = 0, the followi~ equation is
obtained:

.-
A4 =1.

—.—

v>~~iA>o,ic>o

The following relation is usually true:

-,

.

.
$
E..

-, -A

—

(27)

A3>0, A2>0,

The coefficient Ao, the free te~ of

may be either positive or negative.

.41> 0

the characteristic.equation,

.

.

. .
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Example:

.1 3=1175= 0.24; ‘P~ Yp ~A ● ; q= - 0.312

~=
2T

- 7.27; — = 3.11
‘A

,-. .

—.

—.
.-
. .

.

5?= - 0.52;
???

Ic
~= - 0.76 .

.- . .-

CL
— = 0.37;2 P = 11.s “-

In order %0 find the coefficients of the characteristic equation,
use is made of equations (27): .-—

A3 [1~=;Y$-
2+%

= 0.24 -[- 7.27-0.753 = 8.27

A2=&%-32}-(+.J[ ?+5]-.% -

= {7.27x0.76+0.52X3.11} - 0.24 [- 8.03] +11.8X0.312=12.7526 ----

= 0.24 {7.145] + IJAXO.312X7.27 + 11.8Xl.175X0.52 +

.- .- ..

—. _..

11.SXO.37Xl.175 = 40.809 -.— -... “.:.:

A.
( )

CL ‘rn~-~% .
=Wy qq 11.8X0.37 (- 3.llXO.312 +

1.175X0.76) = - 0.3362 ..
.-



NACA TM 1264 .

the roots of equktion (26) are denoted by ‘I~A2)A3j ad -.

solution of the system (13) is obtained in..theform
“.

I
e

..
/+~: AJ )@ ‘- )@

r = Rle + 32e + R3e +R4e “ .

..—

..-
4

—

.
~%vldently,in order that the sideslip a~le Bna the angular

velocities of the airplane B, 5, anfl 7 should decraase xith Mrae
(that is, fn crder that the airplane should be dynamically stable),
It is necessary that all real roots be negative and that the com-
plex roots have mgative real parts. In tinegeneral case, the solu-
tion of an algelmsic”equation of’the fourth degree :s laborious. In
the given case, however, by maki~ use of the special characteristics
of the equation of lateral stabillty, this.equation may be qufckly
and simply solved. The determination of tha,roots of equation (26)
takes no more than 20 mtnutes.

For airplanes of the usual type} the chmactemjstiq equati6n
of the Iateu’alstability has two real roots of which OM. 1s very
large and the other very small.and two complex cor@gat.a mobs. The
small real root Is denoted by Al, the large r~al root by A2, and

the complex conjugate roots by h3 and h4. j%cauae ~~ h ver~
Small, the following equation may be written with a large degree of
accuracy:

A1k+Ao=O”

from whioh “Al is imwdiately deterininedlo. -----

.-.—

1.

..-—

.-

. .. -.
.!”.. ...—.

-.. ---

10Praotical.computationshows

accurate. I%r example, ifh~ is

obtained value always agraes with

.

that the value A 1 = ~JO/Al 18

graphically determined, the

‘1 = -Ao/Al .

-..
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‘oAl=.——
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— .

39

(28)

Iiowit oan be

is unstable.

Example.:

.—

seen that if A. < 0, then Al> O and the airplane
L

Al = 40.809 A. = -0.3362

From formla (28)

A. -0.3362
%— = “ ~ = - 40.809 = 0’00825 ,.

h detetinfng A2, it must be reaalled that h z iB large and there-

fore if the powers of A2 below the third are neglect@ the approxi-

mate “valueis obtained

whence

Computations on many
X2 is the valuell

Beoause iA> 0 and

+<0.

By setting

A (A)

‘2 Z-A3

airplanes show that

at

2
A2ZJ

iA ‘

below-stalling anglee of attack 2P < 0,

.-

the lest approximateion for

.

(29)

llUSUIQ- the value of Zp/iA gives a very small error in the

detetination of the root A z. However, a more accurate determination

Is necessary to compute the oomplex roots of the characteristic equa-
tion (more accurately, the real part).

..
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for a more.accurate

a8 a function of A

determination

near a value

NACA TM 1264

of the root ~, A is plotted .
equal to h%tp/fA, by l.aYti

off A on the abscissa and A on the ordin&te. ‘The &terseotlon
of the curve A(A) with the abscissa gives the accurate value of
~. Becauee”

.-
g
0

A’(A) = 4it3+5tA3~2 + 2A2~+A~

and as a polynomial for large numbers has the sign of its greatest
term and A2 is negative, usually A’(A2) < 0. mnce, if after

the first trfal the point falls above the X-axis, the next value
of A2 In smaller absolute value is taken, whereas if the point

falls lelow the X-axis the next value in grea~ absolute value is
taken. Usually, three points are sufficient for drawing the curve
A(A) and determining A2.

Example: Find A2 from the equation

~4 + 8.27A3 +12.75A2 +40.809 A- 0.3362 = b

dBeoause 2 iA = -7.26, the value h21 =’-7.2 is used for the first .
value of A2* .

The order of computation is clear from table I.

The second, third, and fourth powers of ~, which are required
for the computation, may be found in appendix 2, which gives the
powers of numbers from 2 to 15 in steps of 0.2 and covers the entire
range of values of A encountered in computation. The curve A(A)
from which A2 = -7.3 h taken, is given in figure 27. After having

found Al and A2, the conjugate complex roots A3, A4 are obtained

from the following considerations:

Equation (26) may be put in the form

A4+A~3+A2A2 +A1A+A0. (h-A~)(~-A2)&2+aA+b) =0

.
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By equating the coefficients of the same Towers of A.-
equation Is o%tained:

the following

,..- ,.

.

-. .-

‘henceb=AcAMbutby(28)‘1=-A(4Al~hence

The value of a is found from

----

(30)

.-

b 4k@2 - A2
a= (31)

‘1 +A2

H a and b me knawn, the roots A3 and A4 are obtained frOM

the equation

.-A2+aA+b=0

-

. ..-

12Tflei3eformulas are written on the assmption that b > a2/4; --

if b c a2/4, the formulas lecome

and in this case the airplane is unstable. If Al< 0, then h ~ O?
and instability resuits. A change in the sign of Al is generally

.
.. .

due to the loss of weathercock stability of the airPlane.

-.



42 NACA TM 1264 .

E ;

~.?
~z

b-~

Example: Find the complex roots of the equation

~4 + 8.27A= + 12.75A2 + 40.809A- 0.3362

It has been established that

Al = + 0.00825 and ~2 = - 7.3

Al
From equation (30), b = -— = -

40.809
AZ m

. 5.61 and

=0

(32) .

(33) “

by equations (31)

b +Al~2 -A2
a=

5.61 + 0.00825(-7.3)-L2.75 = o ~90

~1+~2 = 0.00825 - 7.3 .

It oanbe seen with the aid of equations (32) and (33) that

()t -:=-q =-o.495=

5. MOTION CHARACTERIZED BY ROOTS Al, A2, A3, ~ A 4

The disturbed motion of an airplane is characterized by the
expressions

.

TAl A2x A3Z A4;
~=Re

1 + R2e + R3e + R4e

—
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This motion may be broken down into three oom~onents.

—— . . . .7

A2Z _ .P y - A23 ..
II pz = B2e ; P2 2 ; r2 . R2e

The computation of the ooeffioients Bl? %2s B3> B4$ %.P2J and eo

forth will not be considered in detail. It should be noted that of
all these magnitudes only four are arbitrary and are detemnined from
the initial conditions, whereas the remainder can be obtained from
these four magnitudes.

From a nmnerical analysis of these coefficients the following
conclusions may be made:.

I. Consider the group

.L—

—.

.

.
The magnitude PI is small in co?nparisonwith B1 and R1. Tti

root & is very small. Evidently, if the airplane is stable,

~cO ‘and themagmitudes j3 (sideslip), p (angular

. roll), and r (angular velocity of yaw) decrease with
increase in 75= tfi).

velooity of

time (with “--”‘“-
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The root Al charaoterlzes spiral stability of the airplane.
—

.

In order to clarify the physioal significance of’spiral stability,
-,

the motion after a roll of the airplane is considered. Let the
airplane roll in such a manner that the right wing drops. Whereas y

.-
in the horizontal pos%tion of the wing the-lift force balanced the
force of gravity, the force of gravity will now give a projection
on the Y-axis afi the airplane begins to sideslip (j3) on the
right (lowered)wing. As a result of the sideslip, two aerodynamic
moments appear: the moment 2PXB teniing to rotate the wing in

the horizontal position and the moment nPX~ decreasing the side-

alip angle $. Because of the action of the moment n~X13 the air-

plariebegins to yaw, that is, an angular velocity r appears, which
gives rise to two new moments:

~X~ am a moment 2rXr, which
.

Thus, the characteristics

inating the disturbance and the

the moment n#r opposing the moment

opposes.the.moment lpx$.

‘~:~tir~ti~~t ~ly inelti-and 2r act

unfavorably (with respect to spiral stability). “

As can be seen frcunequation (28) spiral stability is oharac-
terlzed _by Ao, whioh is determined by the equation

—

where

Hence, there will be stability for the case where %Ze in absolute

value is greater than 2rnp whence
----

.
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The degree of stability is characterized by the time in which the
initial disturbance decreases by one-half ,-...

.

%
z=2n:=- 0.693

...

but

:=$ —- . .

t~pm = - 0.693 ;1 (34) ““--’‘--”-“’
.—

l%the case of instability ,h’=> 0 and the time of decrease of the

initial disturbance by ens-half will be negative. h-the case “of
stability ~ < 0 and tsyfi will be positive

..

., -.

‘r= 1.83 sec ‘1 = + 0.00825 “J. .-

%pir =
1.83

- 0.693 0.008~5 = - 1S4 Sec —.
.-

It has been found that 2.5 minutes after the initial instant the
initial disturbance will increase to twice the value. Such motion
evidently will not be observed by the pilot.

—. .

Ihcperienceshows that spiral instability is not felt by the
pilot if the the of increase of the initial disturbance to twice
the value is large. It is to be mpposed that if

IIt > 40 - 50 seeSpir .—

at the initial flight conditions the airplane will be satisfactory
with regards to spiral stability.

II. Consider the group

“. —-:

.—

A#
F2 = R2e
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Numerical analysis shows that during a disturbance B2 _and R2 are

small in comparison with P2; that is, this group is found to char-

acterize a motion which differs little from a-pure roll.- It has
been shown that

h2N~

and because at below-stalling angles Zp < 0, Z will decrease very

quickly with time because h2 is large. Generally, at the below-

stalling angles this motion is not noticeable after 1 second.

III. Consider the group

Because ~ and ~4, B3 and B4 are conjugate

—.

1264 .

. . ,....-. ,

-.
.

—
—

.

.

complex quantities
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But. e(7~+~)i+ e - (q%+ P)f.2 cos(q%+ ~); and, therefore, if 2B = ~

‘similarly,

.- _

This group characterizes the oscillatory damping of the motion.
----- —

The time required.for decreasing the amplitude by one-half can
now be found.

Therefcn?e

Ikample: T = 1.83 k= - 0.495

% = - 0“693*) =2“56 ‘ec

The period of oscillation is determined from the relations

;5 = 2X

y=;

(35)

. -. --

(36)

T=2Y(:
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Example: T. 1.83 sec ~ = ~“.31 -- “.. ;. ._

1.83
T = 6“28 m = 4*98 ‘ec

With re~d to the oscillatory stability of the a~planej the
following condition must be tiposed: The airplane should be stable
in oscillation and the the of decrease of the”initial disturbance
by one-half (t2) should be “lessthan l+ 1.5 times the”oscillation

period

-tZc i+l.5T

The stability in oscillation is affected mainly by the lateral static
stability n~. The other coefficients also af’feetthe oscillation-of-

the airplane but to a smaller extent. WhereaO an airplane may have a
small static-instability, it .my nevertheless be @mmicQlly stable
but the perici”of oscillation (T) and the time of decrease of’the
initial disturbance by one-half (tz) will be large. At greater

static beta’billty, the airplane will be Unetab”lein c)~cillationj

that 1s, the amplitude of oscillation of such an airplans will
fncrease with time. For a coefficient of laterql stitio@ability
of the order ~ = 0.01 and &reater, the least disturbance wfll

teriito increase the”roll of the airplane (a kind of slow spfn).
Whereas from tests in the wind tunnel “ofthe mdel.with locked con-
trols it was found that the airplane is neutral or even has @ small
weathercock stability, in flight such an airplane will be--unstable
beca”useof the mobility of.the control surface. For this reason,
from the requirement of oscillatory stability it follows that the
airplane should be statically stable over the entire range of flight
angles of attack and especially at lelow-stidling angles of attack.

.—
6. ORDER OF COMPUTATIONOF DYNAMIC STABIHTY

Computation of Airplane Northrop 2E for Dynamic StabiUty

In”this section, the entire dy&nic-stability computation is
presented from setting up tables of the structural parameters to
obtaining the final dynamic stability characteristics. At the
start of the computation, a tible must be set up in which all para-
meters of the airplane required for computing the lateral dynamic
stability are included.

.-
.

.—--.

..

.
—

.

.L
.

..

.
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1. G, weight of airplane, kilograms
.

II. Wfng

1. %, wing span, meters .,

.

.

—
,

—.

2. bm, midwing-section span, meters

3. S, wing area, square meters

4. co> chord at root, meters

5. Ct9 chord at tip, meters

6. ~, dihedral angle - angle between plane of chords and,
plane perpendicular to plane of symmetry of airplane
and passing through the chord at the tip, degrees
(fig. 15)

7. X, swe~tback angle - angle between lines passing through
focal line taken at one-quarter chord from leadtng edge
of wing and plane perpendicular to axis of fuselage
(X> O for forward sweepback), degrees (fig. 19)

8. 7, angle of twist of wing, degrees m

III. Vertical tail surface —

1. St f 9 vertical tail surface area (area of tail with part

of fuselage, (fig. 11), square meters

2. %t, tail span (measurement shown in fig. 11), meters

3. zt, distance from center of ~vity to hi-e of rudder,

meters
—

4. Angle between line of zero Lift and line Joining center
of gravity of airplane with geometric center of verti- .-

cal tail surface (with part of fuselage)

Iv. Fuselage

1. Sf9 area of

a&plane,

projection of fuselage on plane of symmetry of

square meters .-
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2. 2f, length of fuselage, meters .

3. h, maximum height of projection of fuselage on plane of
symmetry, meters +-r-

C

4. Zti, distance of
.

meters

The magnitudes computed
positive.

The table of structural

G.

s.

b=

h=

co =

OK=

v=

x=

7=

26OO kilograms

33.4 square meters

14.53 meters

3.29 meters

2.9 meters

1.5 meters

70 30’

2° 30’

10 30’

f.x
center of-gravity from nose of fuselag~

.

under I, II, III, a~ IV are always

Parameters for the Northrop airplane is:

The airplane is a low-wing single-engine

G
78 kg/m2

s~f-=
s — = 0.093s

‘*f . 3.11 square meters

bt = 1.88 meters

2t = 5.65 meters

Sf =11.69 square meters

2f = 8.67 meters

h = 1.45 meters

lfl = 2.11 meters

x= 120

co
2t

n = — = 1.94
o~

— = 0.389
-b

type

2f

T=6

Sf
— = 0.35
s

bm ~
— = 0.226“b

2~
11=2.2; = 11.8 — = 0.244lf

.
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Determination of AerciiynamicCoefficients

1. The curve of variation of the coefficient of lift (~)

against the angle of attack (a) obtained from tests in the wind
tunnel for a model of the Northrop airplane is given in figure 2.
The angle of attack is measured from the wing chord, Because CL

must be determined for angles of attack measured from the line of
zero-lift, table II is obtained. .—

from
on a

-..

2. The rotary derivatives Zps ‘r> ~~ and ~ were determined

the aforementioned equations and curves and also experimentailj ‘-:-
—

special apparatus (reference 11).
--—. . .

(a) Detemninati.onof 2P

The derivative
-.

‘P
is obtained from the data of the table of

structural parameters (fig. 6). The curves experimentally obtained ..

and by figure 6 are gfven in figure 30. Theoretically, the deriva-
tive 2P does not depend on the angle of attack but during a test ““ T

a certain change in Z
T

with change in Ua is usually obtained. ‘- ‘--”

The agreement obtained, as shown in figure 30, is suffich5ntly good
.-

. and for computing the dynamic stability the value of 2T may be

taken from figure 6 without resorting to experiment.
.

- (b) Determination of ~

The theoretical value of

the given q

~ is found from figure 8 by using

and h in the table of structural parameters. The
value of ~~ taken from figure 8 must be multiplied by ~ ...——..7

(angle of attack in deg. from the zero lift line). The values of

%
obtained from test ati from figure 8 are given in figure 31.

It is obvious that a rather large disagreement results. A syste-
.

matic numerical analysis of the dynamic stability equations shows,
however, that the dynamic stabillty characteristics depend li~tle ““
on the value of

% ad for thf
s reason only an approximate value

of ~ need be known. Eence, for computing the dynamic stability,

the value, which.is obtained from figure 8, maybe used with suffi-
cient accuracy. .---<

(c) Determination of 2r. .-

.
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The determination of the

the following three stages:

(1) Determination

(2) Determination

of the wing

(3) Determination

surface

1. The derivative

of qs

of the

of the

NACA TM 1264

derivative 2r must be divided into

for an untwisted wing

correction on lr due to the twist

part of lr due to the vertical tall

Zr is obtained from figure 10 by the given

~ and A of the wing. The value Zr/~ taken from figure 10 must

be multiplied by aa (from the line of zero lift). The curve of

Zr against ~ for the Northrop wing”is presented in figure 32.

Tfledashed curve gives. lr for the wing without twist.

.

-.

2. As the Northrop wing is aerodynamically twisted such that
the angle of attack at the tip of the wing is greater than the
angle of attaok at the tip of the midwfng by 1.5°, figure 12 must
be used to determtne the correction. This correction evidently
does not depend on the angle of attack and therefore the entire

.

straight line undergoes parallel displacement. The correction for
twist is :

Ip, twist = 0“0144

3. The correction on 2r due to the vertical tail.smface is

obtained from equation (14). The requiretivalue of at is deter-

mined frcm.figure 11. The continuous line ~figure 32 shows the
...

derivative 2r of the “Northropairplane with account taken of the

twist of the wing and of the vertical tail surface. The-figure
also gives the points obtained,from experiment. It is apparent that
the agreement is gocd and that the derivative Zr may be computed

theoreticallywithout recourse to experiment.

(d) Determination of q

The derivative ~ is nade up of a part due to the fuselage

with vertical tail surface and a part due to the wing, The
~ due to t$e fuselage with tail is computed from equation

part .

(16a).

.
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.

The value at is obtained from fignre 11. The part ~ due to the

wing is com~uted ~om the data presented in figure 15. In order to
obtain ~, the value ~/~2 from figure 15 must ke multiplied by

the square of the angle of attack. The angle of attack must ke in
degrees and measured f%om the zero-lift line. The sum of these two
parts gives the derivative ~ of the airplane. The values of %Le

derivative ~ for the Northrop airplane obtained”frcrntest and

from computation are shown.in figure 33.

It should be remembered that the derivative ~ plays a great

part in computing lateral dynamic stability and.for this reason it
is desirable that ~ be computed as accurately as Tossible.

-..

,..-.

Remembering also that equation (16a) may in certain cases give a
large error, this magnitude mustbe experimentally determined.

—

(e) Static derivatives Yp, 2P, ~ ....._
-.. .:.

The static derivatives are determined from standard wind-tunnel .
tests; therefore these magnitudes as a rule must be obtained as shown ... ._ ‘-:=
in section 3. The values of yp obtained by equetion (22)(curve) -.

and by experiment (points) are presented in figure 34. Equation (22)
generally gives a sufficiently aCCU??a% VahIS of ya. The values

of 2B for the Northrop airplane obtained from tes~ and from oompu-

tatlon are given in figure 35. The upper dashed curve gives 2B ‘-’- “:
for.the value w = 7.25° (dihedral angle). In order to take account
geometrically of the effect of the fwelage for a low wing in the
formula the dihedral must be decreased, as has been pointed out, %y
20 to 56. An afiplane is co%idered the chassis of which is not
streamlined and all projecting parts on the luwer surface increaee
the effective dihedral; theref~re, for the comyutationj the v angle
minus 3° is used, that 1s, an angle of 4.25°. The lower dashed curve
in figure 35 gives the value of 2~ obtained from computation

,----

,-
—

___

(Wef = 4.25°). The value %P/&is obtatned for the given q ati ‘ ‘“--’

h frcmfigure 18. .—

The effect of the midwhg on the derivative is taken into
account by the decrease in ~2B/~W by an amount that may be obt~fned ‘--- ‘..““

by use of equation (18). The center tine in f@re 35 gives the
.1.

value of 2
P

with account-taken of the Pati,due to the vertical-tail

surface and tlfiecontinuous line gives the Value 2P, if the sweep- .- ‘_ :
back of the wing is considered. ..
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The values of %
= &2n/~13 obtahed from

tion (21) are given @ figure 36. In equation

.-.
NACA

.-

teet and-by equa-

(21), the value
~ .0.8 is used; the value of the coefficient K - Is obtained

P
flmm figure 22 and at from figure 110

Notwithstanding the sufficiently good agreement that was

=
TM 1264 .

.-.

*

obtained for the Northrou airdane by oomtiutationand te–stfor the
values ‘P . i3C@J3 and-

sidered only approximate

determined from the test

%:
&n/~i3, th&e fo&mulas must be con-

and In all cases the values
% ati %

curves Cn= f(p) a@ Cz =fl(13).

Moments of Tmsrtia of the Northrop Airplane

The moments of inertia, as has been prev~tiuslystated, may be
obtained by computation. For the Northrop airplane, the_moments
of ’inertiaare determined by full-scale experiments according to
the method explalned in the report by U. A. Pobyedonostsev (ref-
erence 13). The results of the investigationare as follows:

iA = 0.0579, iC = 0.0959

where the values are given in nonlhensional fo~,

For convenience of computation, a table or all coefficients
that enter the characteristic equation must be set up as shown In
table 3, in which for the derivatives the test values were taken
and the angle ~ was computed from the line of zero-lift.

. .

.

ltromthe data of table 3, the coefficients of the cl&acter-
Istio equation A3, A2, Al, and A. are computed by equations (27).

The values of these mefficients for the Northrop airplane computed
for the angles of attack ~ = 1°, 5°, 9°, and 13° are

table 4 and the values Al, A2, ~, arid II,computed by

tions of section 4, are given.~ fi~es 37 and 38. A
of the computed results with fllght tests of reference
in figure 39.

Complete agreement was obtained for the period of-
The disagreement that exists for t2 (the time of decrease of the

given in

the egua- -.
comparison
14 is made

oscillation T.

amplitude to 1/2) may be explained by the fact that no account waa .
taken in tinecomputation of the effect of the propeller slipstream

.
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on the vertical tail surface. The n?agnitudes Al and A2 in
.

flight have not been determined; thus it is impossible.to check
the accuracy of the computations of these values. It can be seen”

z from figure 39 that the computation gives sufficiently go6d results.
.

2

.

.

.

7. AIT’ROXIMATEFORMULAS

In this section, equations are given for estkthg roots
quickly from the given aerodynamic coefficients. These formulas
may also be used in computing the corrections on Al, h2, ~, and q

if after computing the lateral dynamic stability it is decided to
change the area of the vertical tail surface or the dihedml of
the wing.

.

For the root ~, the equation A2 = I~iA can be used.. The
.

approximate expression for kl, which determines the spiral stabil-

ity, iS obtained from Al = -AO/A~ and because
.

therefore

The th of decrease of the initial disturbance
by the equation

55 “----..—

..— --

.-

.-

.

(37)

to 1/2 is obtained ..

.

For tinemagnitude ~ (giving the time of decrease in the smpli-
tude of oscillation t2 to 1/2) the following eqtition can%e- .—
used:

2.1A1

kk22
.

= (38)
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It can be seen frcm”equation (38) that the value cf ~ increases
in absolute value with increase in magnitude of the damping of the
yaw ~ and the value yp, which characterizes the lateral foroe

in sideslip. The magnitude of ~ drops in abaolute value with
Increase in iC of the nondimensionalradius of inertia about the

Z-axis. Vibrational instabilitywII1 occur for t > 0 and, as oan
be seen from equation (38), vibrational instabilitymay be obtained
for e large spiral stability if ~~ O, which is usually obtained

for large values of the derivative 2P and in.the absence of
weathercock stability, that is, when ~ >0. “For-this‘r&son,

Il. ........* ---.& --- ““:-
when the airplane ~“s mali weath&c6ck st-abilityor instability,
the wings should not be given a large transverse dihedral because
the derivative Zp will then be large”and thie condition will lead

to,exceasive spiral stability and, what Is particularly &portant, ~
may give rtse to oscillatory instability.

-:..
If the area of the vertical tail stiface IS c&an&ed, the change :“”

in ~ is obtained by the equation
..

—.
where

.
,.-

.“.— -s-. —.-- >

. .. =._. :s
..

.

.. .. >--.:.—

. .
.

.

z% distance from hinge of rudder to center of gravity “--

ASt change in vertical tail suuface area
in area; AS < 0 for a decrease)

The change in ~ 3.sobtained from the

The new value of E is
obtained value 5 ‘, tz

where T = 1.1 (G/s)/v

obtained from
is found from

t2 = - 0.693

E’=

—

(AS~ O for increase

equation AE*AnJ2iC.

& + A~. From the newly

(for an altitude of 30c0 m).

.
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Because Al may be approximately

and

lm _

.57 ._ .%”.

determined,by the equation .-,

1%‘P
+ iC iA

,
.

A, .-
.- —

.- —

the following equation is cbtained:

V=-] “(,,)” ‘“””-’

whence the pericd T is determined by the eqution
.:-

G

T=
3

6.28 ~, where T = l.1~ ..

.
The greater q is the smaller the period of oscillation is

found to be and therefore the period decreases with”decrease in the-
absolute value of the derivative. nP, with increase in ~, the non-

dimensional radius of inertia with respect to the Z-axis, and with
decrease in tilevalue of the derivative 1~. If the expression under

the square root sign becomes negative (as may occur in the case where

%
z O, that is, in the atwence of weathercock stability) the magni-

tude q does not characterize the period of oscillation but together
with the magnitude ~ determines the asymptotic deviation of the
airplane from its ccurse.

Tne previously derived approximate equations give very gocd
agreement with exact computation for the Northrop ‘2-Eairplane. In
other cases, generally speaking, the agreement may be less complete
but a qualitatively correct result will be obtained13.

. . .

—

— .—

.. _- ..=.

13At the time the present article was being prepared for pub-
lication the previously derived fcrmulas were checked for a large

.... .

number of airplanes. In almost all cases the approximate formulas
give very god agreement with the efict formqlas and they may there- .

fore be used in computing the lateral dynamic stability of the
------.,+

.
airplane. >‘<-

.—.
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APPENDIX 1 .

Up to the present time investigations In the wind tunnel have +

been conducted in a system of axes different from that assumed in
r
z

this paper and for this reason equations are presented herein with
the aid of which the ol& coefficients may be reduced to the coef-
ficients used in this paper.

The sideslip angle ~ (previously y) in the diagrams of the
wind-tunnel tests has the same sign as ~ assumed in the report.
The moment coefficients have the opposite sign. Moreo r, up to

Fthis time the moment coefficientswere referred to pV in order
to reduce them to nondimensional coefficients. If the yawing
moment (in.the old notation Cu) is based on the distance between

the center’of gravity and the rudder hinge ati the rolling moment
(Cu) is based on the span,

2t
C1.-2Cmx Cn=- 2~cq Cy = - 2CZ

If the results from the tunnel investigations (cm, C*, Cz)
are given In a gravity system of coordinates &m/aP, ~~1~~ >

and ~z/@ are obtained from

nfi) and y
B

are obtained from

ac,
2p=-#=

the curves and the coeffici&ts Z@,
.

the equations
.

acm
- 2-x57.3”

&n .Zt acw acy &z

np=qr-’-2T7jp57”% %=F”=-2T X57.3

If the results are given in a system of chord axes, all moments
2 the rolling moment C’m is based.onand forces are based on OV ,

the syanj and the moment of.yaw C%Y is based on Zt (the distance

between the center of gravity and the hinge of the rudder),

SC’ Cos a+
2t
y C’w sin a; Cw (-j,

w
Cos a- (’j!m sin a

Cz =C’z .

.
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Wkd finally

&~
2p=~=-2

aJcm-
-~ 57.3 = -

.
[

. *tm l% &w 12~ccsu+~~sin a 57.3 “ _._.

&n 12t *’w *,
r$=~= 1-%~’”””-”s””in” 57”3 -..

.-
— .—
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A ??

2.0 4.00
2.2 4.s4

2.4 5.76

2.5 6.76

2.9 7.84

3.0 9.00

3.2 10.24

3.4 1.1.56

3.6 12.96

3.8 14.44

4.0 16.IXI

4.2 17.64

4.4 19.36

4.6 21*16

4.8 23.04

5.0 2S.00C

5.2< 27.04

5,4 29.16

5.6 31. 6

5.8 33. L

6.o 36.00

6.2 38.44

6.4 40.96

‘??

8.00C
10.65

13.82

17.58

21.95

27.oo
32.77

39.30

46.66

54.87

64.00

74.09

85.18

97.34

110.6

L25.O

L40.6

L57.5

L75.6

L85.1

?16.0

!38.3

!62.1

~4

16.00

23.43

33.18

45.70

61.47

81.00

104. *

I-33.63

168.0

208.5

256:0

311.2

374.8

4A7.7

530.8

625.0

731.2

850.3

993.4

3.31.6

.296

.477.6

,677.9

A

%x
6.S

7.0

7.2

7.4

7.6

7.8

8.(I

8*2

8.4
8.6

8.8

9.0

9.2

9.4

9.6

9.8

0.0,

0.2’

0.4

0.6

0.8

AZ

G
46.24

49*(X

S1. m

54.7(

57.7[

60.S4

64.0(

67.24

70.5E

73,9E

77.44

01.Oc

64.64

98.36

92.16

36.04

X3.o

34’.0

28.1
L2.4

16.6

~3

287.:

314.4

343 .C

373.2

405.2
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474.5

512.6

551.4

592.7
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681.5

729.0

778.7

830.6
864.7

941.2

1000.O

1061.2
1125.0
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L259.7

FROM 2.0 To 15.0 -

h4 h

1897.5 11.(

2138.1 Il.:

11.4

2401 11.[

2687.4 11.[

2998.7

3336.2 12. (

3701.5 12.z

12.4
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4521.2 12. E

4978.7
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T
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153.8 1806.6 23642.1

158.8 2000.4 25S17.4

163.9 2097.0 26S43.5

169.0 2197.0 2s561.0

174.2 2300.0 30350.6

179.6 2406.1 32256.0

185.0 2515.5 34210.2

180.4 2b28.o 36267.4

186.0 2744.0 38416.0

201.6 2863.3 40658.7

207.4 2986.o 42998.2

213.2 31.I.2.145437.2

219.0 3242.0 47878.6

●
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t

n An

41
.3 8.27
2 12.75
1 40.809
0 -0.3362

I I

{’ = -7.2

2687.’38
-373.248
51.84
-7.2
1

TABLE I

T
A/n A

1$n

2687.38 2998.6I3
-3086.76 -405.224
660.96 54.76
-293.82 -7.4
-0.34 1

-32.58 I +

2998.66 2839.8
-3351.2 -389.02

698.19 53.29
-301.98 -7.3

-0.34 1

43.33

TLBLE II

aOa lo 50 90 130

CL 0.092 0.44 0.74 1.04

2839.8
-3217.2
679.4

-297.9
-0.34

3.76

.

,
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TABLE III - COEFFICIENTS FOR COMIWTIN3

DYNAMIC STAIUIJTY OF NORTHROP AEtPLANE

%=1°
0.53

0.068

-0.D39

-0.45

0.942

-0.019

-0.055

1—

0.53

0.068

-0.037

-0.45

0.115

-0.034

-0.9675

0.48

0.068

-0.03

-0.42

0.180

-0.05

-0.073

7
~ = 13*

0.45

0.068

-0.032

-0.38

0.26

-0.065

-0.069

iA
= 17.3; ~ = lo.~ -

%.

_kJ
CL

-E- 0.046

$ 0.265

2p

~ 1.175

~ -0.396

.
Lr

q 0.727

~ .0.197

-0.572
%1

TABLE IIIa

%=5°

0.22

0.265

1.175

-0.395

-7.9

1.99

-0.354

-0.702 I

%=9°

0.37

0.24

1.175

-0.312

-7.27

3.11

-.052

-0.76

% = 13°

0.52

0.225

1.175

-0.333

-6.57

4.5

-0.676

-0.717

.—

.—.v = 11.8

—
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1 An

%
1
5
9

13

JLJ

8.637
8.747
8.27
7.51

A2

11.5
12.89
12● 75
13.32

Al

41.04
44.43
40.809
44● 14

— -—

A~

0.209
0.1524
-0.3362
-4.025

.

— -.
.
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A

Figure 1. - Systemof coordinateaxes. —

x

\
Y

G.cos9

/

6

z
Figure 2. - ProSection of grmit y force on axis in symmetricflight.

Figure

x

z

3. - Rojectlon of ~tity force on axis during roll of airplane.

—
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6-c#6

Figure4. - FroJeotion of gravity foroe on axisduring
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I?igu.re 5. - fkrtarj-deriva~ive Zj.’”

pw by angle $.

—
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Figure6. - Yalue of derivative lp for wings.of Y8TIOUS aapeot ratios and tapers.
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Figure 7. - Derivative %“

wing

? -2 3
~

4 5

Figure 8. - Values of .~/~ for wings uf various aspect ratios and
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.

tapers.
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IUgure 10. -

Y -.

x

Figure 9. - Derivatiw”Zr.
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Flgm?e Il. - ~alus of at . (~J&L) ~ for variousaepsct =tiOs
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of vsrtloaltall surface.

J
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Figure ~. - Graphs for cietermW correcticm on lr due tIO ‘mid $ W~.
.
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I?igure 13. - Determimtioti of oorrecti.onon ““Zr for twist of wing.
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Figure 14. - Derivative ~.
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Figure 15. - Values of +/~2 for wings of varlou~aspectratiosand teper8.—-=: .----
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A

I@xre 16. . DerimtiVO 2P.

Figure 17, - Measurementof dihedz%langle of wing (deg).

.

.
.— -. 9

Figure 18. - Curves fm determiningderivative 2P of wing with dihe~al.
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.. .)Z

.

.

Figure 19. - Rront view of Wirx3tip. ‘
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Figure 20. - Sweepback of wing.

Figure 21. - Derivative n~.
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Figure 22. - Curves for detezmdn3ng effect of fuselage on derivative

Figure 23.
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- Derivative y~.
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Figure 26. - Variation af lateral forceooeffioientCy ~th’s~desW a~le PC
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Fklgure27. - Determination of root A2 of”cb&acteristi& e~uation.
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- Measurement of structural parameters

.

.

of airplane●

Figure 29, - Curves m? lift force and drag against angle of attack.
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Figure 30. - Derivaiiive 1P “-’ “-: “--”of Northrop airplane.
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Figure 31, - Derivative ~. @ NOrt~Op airplati.
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—-—— W@ with twist

With effect of vertioal tail surface

%

o 5 aao 10 15 ,,-.. ..

Figure 32. - Derivative 2r of I?arthroyairplane.
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Figure 33. - Derivative + of-Northrop airplane.
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Figure 37. - values of roots of characteristic equation Al
and A ~ (Northrop airplane).
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Figure 33. - values at’ f and q (Norttiopampmle) .
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Figure 39. - Ccsn@rlsanofvaluesT and *2 obtaine&by cmputatkm ani from flight teat

(Northropa&plane).
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